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Numerical simulation of fully nonlinear irregular
wave tank in three dimension
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SUMMARY

A fully nonlinear irregular wave tank has been developed using a three-dimensional higher-order boundary
element method (HOBEM) in the time domain. The Laplace equation is solved at each time step by an
integral equation method. Based on image theory, a new Green function is applied in the whole fluid
domain so that only the incident surface and free surface are discretized for the integral equation. The
fully nonlinear free surface boundary conditions are integrated with time to update the wave profile and
boundary values on it by a semi-mixed Eulerian–Lagrangian time marching scheme. The incident waves
are generated by feeding analytic forms on the input boundary and a ramp function is introduced at the start
of simulation to avoid the initial transient disturbance. The outgoing waves are sufficiently dissipated by
using a spatially varying artificial damping on the free surface before they reach the downstream boundary.
Numerous numerical simulations of linear and nonlinear waves are performed and the simulated results
are compared with the theoretical input waves. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Ocean waves are generally recognized to have properties of not single frequency regularity but
irregularity composed of multi-frequency components. And the wave conditions encountered for
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ocean or coastal structural design often exceed the validity range of small amplitude wave theory.
Therefore, prediction of fully nonlinear irregular wave propagation and wave loads in the time
domain is a much more important topic.

During the past few years, due to the continuous and substantial increase in computer power,
numerous numerical methods have been proposed to account for the effect of wave nonlinearity.
However, most researches have been conducted on the nonlinear regular waves. For instance, Xu
[1], Romate [2], Kim and Kim [3] employed the higher-order boundary element method (HOBEM)
to simulate fully nonlinear waves; Celebi [4], Scorpio et al. [5] and Beck [6] adopted the desingu-
larized boundary integral equation method to calculate fully nonlinear wave loads on objects; Wu
et al. [7], Hu [8], Wang and Khoo [9] used the finite element method to study the fully nonlinear
water wave problems. Literatures for the simulation of the irregular waves are relatively limited,
such as Xu et al. [10] and Boo [11]. Simulation of fully nonlinear irregular waves in the time do-
main requires a robust numerical scheme because of numerical instability, expensive computational
cost and large computer storage [12].

In this paper, an efficient three-dimensional HOBEM is developed to simulate the fully nonlinear
irregular numerical wave tank in the time domain. The boundary integral equation is formulated
with quadratic-order elements and repeatedly solved at each time step. A new Green function is
used based on image theory; therefore the discretized elements are only distributed on the incident
surface and free surface. Theoretical waves are given as the incident waves and gradually increase
from zero to the actual value for reduction of the transient disturbance. At the downtank, an
artificial absorbing damping layer is employed on the free surface. The instantaneous free surface
is updated at each time step by the fourth order Runge–Kutta time integration scheme. The input
waves used in the present work are linear regular and irregular waves for the linear wave simulation,
and the second-order regular and irregular Stokes waves for the nonlinear wave simulation. The
second-order irregular waves are generated from the combination of two or four wave components.
Numerous calculations are carried out and the numerical results show that the proposed scheme
has a high accuracy and good numerical stability.

2. MATHEMATICAL FORMULATION

2.1. Boundary value problem

The origin of the Cartesian coordinate system is in the plane of the undisturbed free surface with
the x-axis positive in the direction of incoming wave propagation and the z-axis positive in the
opposite direction of gravity, as shown in Figure 1.

It is assumed that the fluid is incompressible, inviscid, and the flow irrotational. Therefore,
a velocity potential �(x, y, z, t) exists and the fluid velocity is given by its gradient. It is also
assumed that the surface tensions on the free surface can be ignored and the water depth is finite.
The velocity potential �(x, y, z, t) satisfies the Laplace equation inside the fluid domain �

∇2�(x, y, z, t) = 0 in � (1)

On the instantaneous free surface, both the fully nonlinear kinematic and dynamic boundary
conditions can be derived from the material derivatives and Bernoulli equation. The resulting
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Figure 1. Coordinate systems and boundary surface.

equations on the free surface SF can be deduced as the following:

��

�t
=−��

�x
��

�x
− ��

�y
��

�y
+ ��

�z
on SF (2)

and

��

�t
=−1

2
∇� · ∇� − g� on SF (3)

where � denotes the wave elevation on the instantaneous free surface profile and g is the gravitational
acceleration. The corresponding linear kinematic and dynamic free surface conditions are given by

��

�t
= ��

�z
on z = 0 (4)

and

��

�t
=−g� on z = 0 (5)

At the lateral walls SW and bottom SB of the tank, the impermeable condition is imposed.
At the inflow boundary SI, a theoretical particle velocity profile along the vertical input boundary

is used in this paper. The exact velocity profile of a true nonlinear wave under the given condition
is not known a priori. Therefore, the best thing to do is to input the most reasonable waves along
the input boundary. While linear or second-order Stokes regular/irregular waves are prescribed,
the following velocity expression is used

v = v(1) + v(2) (6)

where v(1) is the linear velocity and v(2) is the second-order velocity.
Here, for regular waves

v(1) = nx
gAk

�

ch k(z + h)

ch kh
cos(kx − �t) (7)
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and

v(2) = nx
3A2�

8
(2k)

ch 2k(z + h)

sh4 kh
cos 2(kx − �t) (8)

where A, �, k and h are wave amplitude, frequency, wave number and water depth, respectively.
For irregular waves, the velocity can be decomposed into N components with different frequen-

cies [13]. Thus, the first order velocity can be written as

v(1) = nx
N∑
i=1

gAiki
�i

ch ki (z + h)

ch ki h
cos(ki x − �i t + �i ) (9)

and the second-order velocity as the following:

v(2) = nx
N∑
i=1

∑
j>i

{
(ki + k j )Ai A j

G+(�i , � j )

D+(�i , � j )

ch(ki + k j )(z + h)

ch(ki + k j )h

× cos[(ki + k j )x − (�i + � j )t + (�i + � j )]

+ (ki − k j )Ai A j
G−(�i , � j )

D−(�i , � j )

ch(ki − k j )(z + h)

ch(ki − k j )h

× cos[(ki − k j )x −(�i − � j )t + (�i − � j )]
}

+ nx
∞∑
i=1

ki A
2
i
G+(�i , �i )

D+(�i ,�i )

ch 2ki (z + h)

ch 2ki h
cos 2(ki x − �i t + �i ) (10)

where �i is the phase angel of each component wave and

D±(�i ,� j ) = g(ki ± k j ) th(ki ± k j )h − (�i ± � j )
2

G±(�i ,� j ) =−g2
[
ki k j
�i� j

(�i ± � j )(1 ∓ th ki h · th k j h) +
(

k2i
2�i ch2 ki h

± k2j

2� j ch2 k j h

)]

From Equation (10), it can be seen that both sum and difference frequency components appear in
the interaction terms at second-order for irregular waves.

Since the proposed problem is solved in the time domain, the initial water surface condition
must be imposed as well. The initial calm water surface condition is applied in the present research.
Thus, the initial velocity potential and wave elevation are

�= � = 0, t�0 (11)

The direct boundary integral equation is derived to solve the prescribed boundary value problem
by using the second Green’s theorem. As far as the boundary integral equation is concerned, it
is very important to choose a proper Green function, which will directly affect the size of the
computational domain and calculation cost. If a simple Green function is used, all the boundary
surfaces have to be contained in the computational domain [14, 15]. If the seabed is flat, a Green
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function including an image on the bottom can be used so that bottom surface is excluded in the
computational domain [16, 17]. If the computational domain is symmetry on the centre line and
the seabed is flat, a Green function including four images on the bottom and a lateral surface can
be used so that only half the computational domain is considered [11, 18]. In this paper, a novel
Green function satisfying the impermeable condition on the seabed and the two lateral walls is
applied so that only the incident boundary and the free boundary are included in the computational
domain. Then the Fredholm integral equation of the second kind can be derived as follows:

�(p)�(p) −
∫
SI

�(q)
�G(p, q)

�n
dS +

∫
Sf
G(p, q)

��(q)

�n
dS

= −
∫
SI
G(p, q)

��(q)

�n
dS+

∫
Sf

�(q)
�G(p, q)

�n
dS (12)

where p= (x0, y0, z0) and q = (x, y, z) are source and field points, and �(p) is the solid angle.
The Green function can be obtained by the superposition of the image of the Rankine source
about the seabed and the infinite images about the two lateral walls. To ensure the convergence of
the Green function, a factor 1/nB is subtracted from each term [19]. The Green function can be
written as

G(p, q) = − 1

4�
[GC(x − x0, y − y0, z − z0) + GC(x − x0, y + y0, z − z0)

+GC(x − x0, y − y0, z + z0 + 2h) + GC(x − x0, y + y0, z + z0 + 2h)] (13)

where

GC(X, Y, Z) = 1√
X2 + Y 2 + Z2

+
∞∑
n=1

(
1√

X2 + (Y + 2nB)2 + Z2
+ 1√

X2 + (Y − 2nB)2 + Z2
− 1

nB

)

where B is the tank width, and h is water depth. A similar technique has ever been used to solve
wave diffraction/radiation problems in frequency domain [20].

The potential � on SF in the right hand side of Equation (12) is assumed to be known from the
time integration of the free surface conditions (3) and (5).

2.2. Higher-order boundary element method

The first step to solve the integral equation is to discretize the boundary surface with a number
of elements. The geometry of each element is represented by shape functions, and thus the entire
curved boundary can be approximated by a number of higher-order elements. Within the boundary
elements, physical variables are also interpolated by the shape functions. Thus, the resulting
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Figure 2. Quadrilateral elements of quadratic order.

approximations are written as

[x, y, z] =
K∑

k=1
hk(�, �)[xk, yk, zk] (14)

�(�, �) =
K∑

k=1
hk(�, �)�k (15)

��

�n
=

K∑
k=1

hk(�, �)

(
��

�n

)
k

(16)

where (�, �) represent the local intrinsic coordinates, [xk, yk, zk], �k , (��/�n)k and hk are the
coordinates, potential, normal derivative of the potential and the shape function at the kth node,
respectively; K is the number of nodes in the element (six for triangle and eight for quadrilateral
in the present model).

Typical shape functions of 8-node quadrilateral elements shown in Figure 2 are written as

h j (�, �) = 1
4� j�(1 + � j�)� j�(1 + � j�), j = 1, 3, 5, 7

h j (�, �) = 1
2 (1 − �2)� j�(1 + � j�), j = 2, 6

h j (�, �) = 1
2� j�(1 + � j�)(1 − �2), j = 4, 8

(17)

By substituting Equations (14)–(17) into Equation (12), the integral equation is formulated in
the following form:

�(p)�(p) −
Ne2∑
i=1

∫ 1

−1

∫ 1

−1

K∑
k=1

hk(�, �)�k
�G(p, q(�, �))

�n
|J (�, �)| d� d�

+
Ne1∑
i=1

∫ 1

−1

∫ 1

−1

K∑
k=1

hk(�, �)G(p, q(�, �))
��k

�n
|J (�, �)| d� d�
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= −
Ne2∑
i=1

∫ 1

−1

∫ 1

−1
G(p, q(�, �))

��(q(�, �))

�n
|J (�, �)| d� d�

+
Ne1∑
i=1

∫ 1

−1

∫ 1

−1

�G(p, q(�, �))

�n
�(q(�, �))|J (�, �)| d� d� (18)

where J (�, �) represents the Jacobian matrix relating the global coordinate and the local intrinsic
coordinates in the i th element. Ne1 and Ne2 are the numbers of the discretized elements on the
free surface and the incident surface, respectively.

The final system of equations is obtained by assuming that the discretized equations are satisfied
exactly at a defined set of collocation points

Ax = b (19)

where x is a vector of unknown potential and normal velocity; A is the influence matrix and b is
the vector obtained from the integration of the single-layer and double-layer integrals in terms of
the prescribed potential and velocity.

Since the discretized integral equation is always variant in time, all the boundary surfaces are
regridded at every time step. The influence coefficients are also computed using the updated grids
and known values. If the normal velocity on a boundary surface is known, the fluid velocity on
the surface can be computed using the following equation:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

��

�x

��

�y

��

�z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

�x
��

�y
��

�z
��

�x
��

�y
��

�z
��

nx ny nz

⎤
⎥⎥⎥⎥⎥⎥⎦

−1
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

��

��

��

��

��

�n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

The first order derivative of wave elevation are also evaluated as⎡
⎢⎢⎢⎣

��

�x

��

�y

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

�x
��

�y
��

�x
��

�y
��

⎤
⎥⎥⎥⎦

−1⎡
⎢⎢⎢⎣

��

��

��

��

⎤
⎥⎥⎥⎦ (21)

where nx , ny, nz are components of the unit normal vector in the x , y and z directions. The
derivatives of geometric variables and potential with respect to the local coordinates can be
represented by

�x
��

=∑
k

�hk

��
xk,

��

��
=∑

k

�hk

��
�k, . . . (22)

2.3. Time marching for fully nonlinear free surface conditions

To update the fully nonlinear kinematic and dynamic free surface conditions at each time step, the
4th-order Runge–Kutta integration scheme and the semi-mixed Eulerian–Lagrangian approach are
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adopted. In the present calculation, the material-node approach is used, in which the free surface
node is allowed to move in the vertical direction with nodal velocity (

→
v). The free surface node

then should be updated at every time step. When the free-surface node is moving with velocity (
→
v),

and the fully nonlinear free-surface conditions can be modified as follows in the semi-Lagrangian
frame:

	�

	t
= − ��

�x
��

�x
− ��

�y
��

�y
+ ��

�z
on SF (23)

and

	�

	t
= − 1

2∇�·∇� − g� + 	�

	t
·	�

	z
on SF (24)

where the time derivative

	

	t
= �

�t
+ →

v ·∇ (25)

and velocity vector
→
v = (0, 0, 	�/	t)

2.4. Ramp function

When the simulation is started, a ramp-function at the input boundary is applied. The ramp function
prevents the impulse-like behaviour of the wavemaker and reduces the corresponding unnecessary
transient waves. It makes the simulation more stable and steady state is reached earlier. In this
paper, a ramp function is applied to the first two waves. The ramp function is given by [21]

f (t) =

⎧⎪⎨
⎪⎩
1, t>2T

1

2

[
1 − cos

(
�t

2T

)]
, t�2T

(26)

where T is the wave period.

2.5. Artificial damping beach

Toward the end of the computational domain, an artificial damping beach is applied on the free
surface so that the wave energy is gradually dissipated in the direction of wave propagation. The
profile and magnitude of the artificial damping have to be designed to minimize possible wave
reflection at the entrance of the damping zone, while maximizing wave energy dissipation. In this
paper, both 
- and �-type damping terms are added to the fully nonlinear dynamic and kinematic
free-surface conditions as follows:

	�

	t
= − ��

�x
��

�x
− ��

�y
��

�y
+ ��

�z
− �(x)� on SF (27)

and

	�

	t
= − 1

2
∇�·∇� − g� + 	�

	t
· 	�

	z
− �(x)� on SF (28)
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In order to minimize the entrance reflection, the damping is designed to grow gradually to the
target constant value in the following equation:

�(x)=

⎧⎪⎨
⎪⎩

�

(
x − xb
Lb

)2

, x>xb

0 otherwise

(29)

where x is the coordinate measured from the inflow boundary, xb is the distance from the inflow
boundary to the beach and Lb is the beach length. In the following sections, Lb will be chosen as
different values according to different problems.

2.6. Time step and stability

The present numerical experiments indicate that a maximum time step of T/40 can be used
before numerical instability occurs. Thus, the time step T/40 is employed in the following numer-
ical examples. Another type of instability, i.e. the so-called saw-tooth instability, is treated by a
numerical smoothing technique covering five neighbouring points. It is applied to the wave elevation
and potential every 10 time steps.

3. NUMERICAL RESULTS AND DISCUSSIONS

For illustration, several numerical simulations are carried out for linear and fully nonlinear, regular
and irregular waves in the proposed numerical wave tank using analytical input waves at the inflow
boundary.

3.1. Simulation of linear waves

3.1.1. Linear regular wave. At first, the present numerical scheme is verified by simulating linear
regular waves. For this simulation, the linear boundary value problem is solved at each time step.
The wavelength and period are � = 5.15m and T = 2.1 s, respectively. The wave slope is chosen as
k A= 0.033. The principal dimensions of the wave tank are L(length) × B(width)×h(depth)=15.45
× 0.3× 0.8m, in which a damping layer with a length of one wavelength is arranged on the free
surface towards the end of tank to absorb the outputting waves. The mesh density distributed along
the wave tank is 10 elements per wavelength. The simulated linear regular wave elevation at the
location (0.28L , 0.5B) is presented in Figure 3 and compared with the theoretical input waves,
where the wave elevation is normalized by the amplitude of incident waves. The numerical results
are in good agreement with the theory except the leading transient waves. Near the end of the
damping zone, the wave profile at a location (0.9L , 0.5B) is shown in Figure 4. It can be seen
that the wave height is sufficiently reduced by viscous dissipation. The above results show that
the present modelling scheme works well with the given problem.

3.1.2. Linear irregular waves. We next consider a linear irregular progressing wave as input at
the inflow boundary. Linear irregular waves are obtained by linear superposition of four waves of
periods T = 1.20, 1.13, 0.93 and 0.85 s, phase angles � = 0, �/8, �/4 and �/2, respectively. Assum-
ing the wave slope k A= 0.1 for each wave, the corresponding wave numbers and amplitudes can
thus be obtained. The principal dimensions of the wave tank are L × B × h = 4.43× 0.4× 0.8m.
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Figure 3. Comparison of simulated linear results with the linear theoretical solutions.
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Figure 4. Wave elevation at a location in damping zone.

In order to dissipate the waves as much as possible, the length of the damping layer is taken as
the maximum wavelength of the four waves on the free surface towards the end of tank. The mesh
density distributed along the tank is 10 elements per minimum wavelength. Time histories of wave
elevations at two different locations a (0.5L , 0.5B) and b (1.0L , 0.5B) along the symmetric line
of the wave tank are shown in Figure 5 respectively, where the wave elevation is normalized by
the sum of amplitudes of the incident wave components. From Figure 5(a), it can be seen that
the simulated results agree fairly well with the linear theoretical ones [13], which imply that the
present numerical scheme is effective even for irregular waves. From Figure 5(b), it can be seen
that great wave energy has been successfully dissipated when the output wave reaches the end of
wave tank, which shows the present damping layer also works well for irregular waves.

3.2. Simulation of nonlinear waves

In this section, several fully nonlinear, regular and irregular waves are simulated while the second-
order analytical nonlinear waves are considered as the inputs at the inflow boundary.
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Figure 5. Time histories of linear irregular wave elevations at two locations:
(a) (0.5L , 0.5B); and (b) (1.0L , 0.5B).

3.2.1. Regular second-order Stokes waves. The second-order Stokes waves are prescribed on
the inflow boundary at every time step, and the resulting waves are simulated by enforcing
the fully nonlinear free surface condition. The wave length and frequency are � = 5.16m and
� = 3.0, respectively. The wave slope is chosen as k A= 0.1. Dimensions of the wave tank are
L × B × h = 18.07× 0.6× 0.8m. At the end of the tank, the damping layer is applied for a distance
of 1.5 times wave length. The mesh density distributed along the wave tank is 15 elements per
wavelength.

The simulated fully nonlinear regular wave elevations at two locations a (0.32L , 0.5B) and
b (0.57L , 0.5B) are presented in Figure 6 and compared with the second-order theoretical input
waves. The numerical results are in good agreement with the second-order theoretical solutions
except for the leading transient waves. It shows that the wave amplitude remains almost unchanged
after the initial development of the waves and the nonlinear wave features are also exhibited
apparently, such as higher crests and smaller troughs. The perspective view of the simulated wave
at t = 10T is illustrated in Figure 7. From the figure, we can see that the reflection from the
radiation boundary does not seem to exist besides for steady wave propagation.

3.2.2. Irregular Stokes waves with two wave components. A Stokes wave formed by the second-
order interaction of two waves is used as input at the inflow boundary at every time step. The
periods of the two waves are 1.20 and 1.40 s, phase angles are 0 and �/2, respectively. Wave
slope is defined as k A= 0.05 for each wave. The principal dimensions of the wave tank are
L × B × h = 7.28m× 0.32m× 0.8m. The mesh density distributed along the tank is 15 elements
in a smaller wavelength. The simulated nonlinear wave elevation is compared with the second-
order irregular Stokes theoretical solution [13] at the position (0.50L , 0.50B) in Figure 8. Figure 9
provides a comparison of computed fully nonlinear irregular wave profile and the second-order
irregular Stokes theoretical one along the central line of the tank at time t = 10.8 s. Reasonable
agreements are evident between numerical and analytical solutions in Figures 8 and 9, except in
the damping zone. Figure 10 shows the perspective view of the fully nonlinear irregular wave
elevation at time t = 14.4 s. There are no apparent reflection phenomena existing at the end of the
wave tank.
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Figure 6. Comparison of simulated fully nonlinear regular waves with the second-order theoretical solutions
at two different locations: (a) (0.32 L , 0.5 B); and (b) (0.57 L , 0.5 B).
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Figure 7. Perspective view of fully nonlinear regular wave elevation at t = 10T .
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Figure 8. Comparison of simulated results with the second-order Stokes irregular waves at a location.
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Figure 9. Comparison of the fully nonlinear irregular wave profiles at t = 10.8 s.
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Figure 10. Perspective view of nonlinear irregular wave profile at time t = 14.4 s.

3.2.3. Irregular Stokes waves with four wave components. The superposition of four second-order
waves is fed at the inflow boundary, whose periods and phase angles are the same as the above
linear case. The wave slope is chosen as k A= 0.05 for each wave. Dimensions of the wave tank are
L × B × h = 5.56× 0.2× 0.78m. The wave elevations at two different locations a (0.04L , 0.5B)

and b (0.44L , 0.5B) are compared with the second-order irregular Stokes theoretical solutions
[13] in Figure 11. The simulated wave elevations agree fairly well with the theoretical ones, which
imply that the present numerical scheme is effective even for more irregular waves. Figure 12
shows the comparison of two wave profiles along the central line of wave tank at two different
times t = 11.16 and 17.21 s. There are no apparent reflection phenomena existing at the end of the
wave tank. Figure 13 shows the perspective view of fully nonlinear irregular wave elevations at
t = 9.3 and 15.81 s.
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Figure 11. Comparison of simulated fully nonlinear irregular waves with the second-order irregular Stokes
theoretical solutions at two different positions: (a) (0.04L , 0.5B); and (b) (0.44L , 0.5B).
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Figure 12. Comparison of two wave profiles along the central line of the tank
at two different times: (a) t = 11.16 s; and (b) t = 17.21 s.

4. CONCLUSIONS

In the present work, a time-domain numerical scheme is implemented to simulate linear and fully
nonlinear, regular and irregular waves by a simple source HOBEM. A new Green function is
applied in the whole fluid domain so as to exclude the lateral boundaries and bottom boundary.
The linear and fully nonlinear boundary value problems are solved separately and thus the boundary
conditions are imposed accordingly. The boundary integral equation formulated by a quadratic-
order boundary element method is solved in the time-stepping procedure. The instantaneous wave
elevations and potentials on the free surface are updated using the fourth-order Runge–Kutta
method. The open boundary is modelled by using an absorbing beach. In the case of nonlinear
simulation, the second order irregular Stokes waves with two/four wave components are used as
the incident waves being fed through the inflow boundary. The linear and fully nonlinear irregular
wave simulations are verified by comparing the computed results with theoretical values. Excellent
agreement is achieved between the predictions and analytical solutions. The proposed numerical
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Figure 13. Perspective view of the fully nonlinear irregular wave elevation at
two times: (a) t = 9.3 s; and (b) t = 15.81 s.

scheme can be easily extended to fully nonlinear irregular wave–body interaction problems, but
the high computational overheads need to be overcome. Further study will be done to simulate
fully nonlinear irregular wave–body interaction problems by a more efficient HOBEM accelerated
by the fast multipole expansion technique, whose efficiency in calculation speed and computer
storage has already been verified [22].
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